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System Software R&D at Sandia

• Intel Paragon
– 1890 compute nodes
– 3680 i860 cpu’s
– 143/184 GFLOPS
– 175 MB/sec network

• SUNMOS lightweight kernel
– High performance compute node 

OS for distributed memory MPP’s
– Deliver as much performance as 

possible to apps
– Small footprint 
– Started in January 1991 on the

nCUBE-2 to explore new message 
passing schemes and high-
performance I/O

– Ported to Intel Paragon in Spring 
of 1993



System Software R&D (cont’d)

• Intel ASCI Red
– 4576 compute nodes
– 9472 Pentium II CPU’s
– 2.38/3.21 TFLOPS
– 400 MB/sec network

• Cougar lightweight kernel
– Multiprocess support
– Modularized (QK, PCT)
– Developed on nCUBE-2 in 1993
– Ported to Intel Paragon in 1995
– Ported to Intel TFLOPS in 1996 

(Cougar)
– Portals 1.0

• User/Kernel managed buffers
– Portals 2.0

• Avoid buffering and memory 
copies



Why Cplant™?

• Modeling and simulation, essential to stockpile 
stewardship, require significant computing power

• Commercial supercomputers seemed to be a 
dying breed

• Pooling of large SMP’s is expensive and more 
complex

• Commodity PC market is closing the performance 
gap

• Web services and e-commerce are driving high-
performance interconnect technology



What is Cplant™?

• Cplant™ is a concept
– Provide computational capacity at low cost
– Build MPPs from commodity components 
– Follow ASCI Red model and architecture

• Cplant™ is an overall effort:
– Multiple computing systems in NM & CA 
– Multiple projects 

• Portals 3.x message passing (with UNM and others)
• Cluster Infrastructure Toolkit (with HPTi)
• System integration & test
• Operations & management

• Cplant™ is a software package
– Available under the GNU LGPL



Cplant™ Approach

• Hybrid approach combining commodity cluster 
technology with MPP technology

• Emulate the Intel ASCI Red environment
– Partition model (functional decomposition)
– Space sharing (reduce turnaround time)
– Scalable services (allocator, loader, launcher)
– Complete compute node resource dedication

• Use Existing Software when possible
– Red Hat distribution, Linux/Alpha
– Software developed for ASCI Red



Cplant™ Systems (SNL/NM)



Antarctica

• 1792+ Compaq DS10L Slates
– 466MHz EV6, 256 MB RAM

• 590 Compaq XP1000s
– 500 MHz EV6, 256 MB RAM

• Myrinet 33MHz 64bit LANai 7.x 
and 9.x

• Myrinet Mesh64 switches
• Classified, unclassified, open, 

and development network heads
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Cplant™ Software
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Runtime System Components

• Yod (xnc++)
– Service node parallel job launcher

• Yod2
– Job launcher for dynamic process creation
– Not yet deployed in production

• Bebopd (Better Engineered Bag Of PCs Daemon)
– Compute node allocator

• PCT (Process Control Thread)
– Compute node daemon

• pingd/showmesh
– Compute node status tools

• PBS
– Batch scheduler



Runtime System (cont’d)

• Yod
– Contacts compute node allocator
– Launches the application into the compute partition
– Redirects all application I/O (stdio, file I/O)
– Makes any filesystem visible in the service partition 

visible to the application
– Redirects any UNIX signals to compute node processes
– Allows user to choose specific compute nodes
– Can launch multiple different binaries
– Displays launch timing information
– Same basic interface as SUNMOS and Cougar



Runtime System (cont’d)

• PCT
– Contacts bebopd to join compute partition
– Forms a spanning tree with other PCT’s to fan out 

the executable, shell environment, signals, etc.
– Puts executable in a RAM disk
– fork()’s, exec()’s, and monitors status of child 

process
– Cleans up after parallel job



Runtime System (cont’d)

• Bebopd
– Accepts requests from PCT’s to join the compute 

partition
– Accepts requests from yod for compute nodes
– Accepts requests from pingd for status of compute 

nodes
– Coordinates scheduling with PBS server
– Allows for multiple compute partitions



Runtime System (cont’d)

• Pingd
– Displays list of available compute nodes
– Displays list of compute nodes in use
– Displays owner, elapsed time of jobs
– Allows users to kill their jobs
– Allows administrators to kill jobs and free up specific 

nodes
– Allows administrators to remove nodes from the 

compute partition
• Showmesh

– Massages pingd output into TFLOPS-like showmesh



Runtime System (concl’d)

• PBS
– Enhanced version of OpenPBS
– Added non-blocking I/O for fault tolerance
– PBS Moms and Server only run in the service 

partition
– Added new attribute – “nodes”
– Contacts bebopd to get a list of nodes to give to 

yod



User-Level Software

• Redirected standard C and I/O libraries
– Catch some system calls and let yod handle them
– Uses a RPC library over Portals 3.0

• Distributed services library
– Used by for communication between runtime system 

components (yod, pct, bebopd)
– Implemented over Portals 3.0

• Puma library
– Implements dclock() and others for compatibility with 

Puma
• Startup code

– Initializes the parallel environment for a process



User-Level Software (cont’d)

• MPI library
– Portals 3.x device layer for MPICH 1.2.0
– Implements peer communication only

• Dynamic allocation library
– New code to support MPI-2 dynamic process creation 

functionality
– Not yet deployed in production

• Job library
– Allows for user-implemented job launcher

• Portals 3.x library
– Basic peer communication functions



Kernel-Level Software

• Minor patches to Linux for memory locking and memory mapping
• Address cache module (unused)

– Caches virtual-to-physical mappings for Portals 3.x
• cTask module

– Runtime system mappings for processes
– Process cleanup

• Portals 3.x module
– Implements Portals 3.x functionality

• RTS/CTS module
– Myrinet device driver
– Reliability and flow control

• MyrIP module
– Provides IP packets over Myrinet



Device-Level Software

• Myrinet Control Program
– Firmware running on LANai processor on NIC
– Packet engine



Cplant™ Can Launch 1010-Node
Jobs in Seconds



Design Issues

• Two ways to move executable to compute nodes
– Pull executable to compute nodes

• Requires some intelligence in the filesystem
• Filesystems can’t handle N-to-1 reads

– Push executable to compute nodes
• No filesystem dependency
• Easier to implement

• Need to start processes in parallel
• Support for other programming models

– Job launch should not be specific to the 
programming model

• Fault detection



Design Issues (cont’d)

• Bebopd is a single point of failure
– No new jobs runs if bebopd goes away
– Distributed bebopd

• Failure only affects part of the cluster
• Haven’t needed to do it yet

– Bebopd checkpoints the state of the machine and 
can be restarted



Emphasis on Reliability

• More nodes, more users, more applications lead to more 
stress on the system

• Myrinet issues
– GM mapper limitations

• Each new cluster exceeded the number of nodes the
mapper could handle

• Entire cluster must be up and running
– Non-deadlock-free routes

• Code for routing algorithm gave only shortest path routes
– Reliability

• Bit error rate orders of magnitude higher than advertised
• Storms of multi-bit errors
• Mis-routed packets, corrupted headers, corrupted data



Emphasis on Reliability (cont’d)

• Runtime system issues
– Most problems related to message passing

• Runtime utilities must recover from network errors
– Problems show up as

• Failure to start parallel job
• Utilities become uncommunicative
• Compute nodes become unreachable
• Allocator becomes unresponsive



Addressing Message
Passing Reliability and Robustness

• Added error detection/correction to Myrinet driver
• Implemented Myrinet switch monitoring software
• Implemented switch error visualization tool
• Fixes to the network reliability protocol

– Fixes to message sequencing bug
– Propagation of failures up the network stack

• Portals
– Fixes to event ordering semantics
– Defined transport failure semantics
– Enhancement for more scalable buffering of MPI 

unexpected messages



Switch Error Visualization Tool



Addressing Runtime
System Reliability and Robustness

• Stripped-down load protocol
– Enhancement to avoid non-scalable operations
– Nodes automatically pruned during load failures

• Enhancements to compute node allocator
– Single point of failure
– Throttling of messages from compute nodes
– Allocator now stateful

• Changes to allow centralized runtime logging
• Issue tracking system



Cplant™ Robustness



Salinas on Cplant™



ASCI/Red Hardware

• 4640 compute nodes
– Dual 333 MHz Pentium II 

Xeons
– 256 MB RAM

• 400 MB/sec bi-directional 
network links

• 38x32x2 mesh topology
• Red/Black switchable
• First machine to 

demonstrate 1+ TFLOPS
• 2.38/3.21 TFLOPS
• Deployed in 1997



ASCI/Red Compute Node Software

• Puma lightweight kernel
– Follow-on to Sandia/UNM Operating System 

(SUNMOS)
– Developed for 1024-node nCUBE-2 in 1993 by 

Sandia/UNM
– Ported to 1800-node Intel Paragon in 1995 by 

Sandia/UNM
– Ported to Intel ASCI/Red in 1996 by Intel/Sandia
– Productized as “Cougar” by Intel



ASCI/Red Software (cont’d)

• Puma/Cougar
– Space-shared model
– Exposes all resources to applications
– Consumes less than 1% of compute node memory
– Four different execution modes for managing dual 

processors
– Portals 2.0

• High-performance message passing
• Avoid buffering and memory copies
• Supports multiple user-level libraries (MPI, Intel N/X, 

Vertex, etc.)



Salinas

• General-purpose, finite element structural 
dynamics code for massively parallel computers

• Currently offers
– Static analysis
– Direct implicit transient analysis
– Eigenvalue analysis for computing modal 

response, modal superposition-based frequency 
response, and transient response



Salinas (cont’d)

• Includes extensive library of
– Standard one-, two-, and three-dimensional 

elements
– Nodal and element loading
– Multi-point constraints



Salinas (cont’d)

• Solves systems of equations using an iterative multilevel 
solver specifically designed to exploit massively parallel 
machines
– Finite Element Tearing and Interconnect (FETI)
– Mature

• Versions used in commercial finite element packages
– Scalable

• As the number of unknowns increases and the number of 
unknowns per processor stays constant, time to solution 
stays constant 

– Accurate
• Convergence rate does not deteriorate as the iterates 

converge



Salinas Sample Problem

• Small problem size
– Only bout 3 MB per node

• Stresses the system more than larger problems
– Ratio of computation to communication is larger
– Higher frequency of message passing

• Good indicator of scaling efficiency for larger problems
• Dedicated time on Cplant™
• Non-dedicated time on ASCI/Red using a single processor 

per node
• Average of five runs



Salinas is 2.5x Faster on Cplant™
at 1000 nodes



I/O Time Is Not Scaling As Well on Cplant™



Scaling Issue on Cplant™

• MPI resource exhaustion at several hundred nodes
• “Too many MPI unexpected messages”

– AKA “Not enough posted receives”
• Short message protocol for MPI is eager
• Unexpected messages are buffered at the receiver
• Initial MPI implementation set aside 1024 8 KB buffers
• A single message of any size consumes a buffer

• MPI_Gather() in MPICH 1.2.0 is implemented via N-to-1 
algorithm

• Quick workaround was to add an MPI_Barrier() to make 
MPI_Gather() synchronous



Previous Strategy for Unexpected Messages
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Limitations

• Limited number of unexpected messages allowed 
due to kernel (or NIC) memory resources

• Any size unexpected message consumes an 
unexpected message slot, even zero-length

• Unexpected message limit based on count rather 
than size

• Consumes a significant amount of Portals 
resources
– 1025 memory descriptors



Current Strategy

Match none
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Advantages

• More efficient use of unexpected message 
memory
– A zero-length message doesn’t consume any 

memory
– Limitation becomes space rather than count

• Uses only a few Portals resources
– Four memory descriptors versus 1025

• More efficient for NIC-based implementations



As for Salinas…

• Change to MPI library had minimal effect on 
performance

• Overhead of extra MPI_Barrier() operation to 
synchronize MPI_Gather() operation is negligible



Salinas Summary

• A commodity Linux cluster is able to sustain 
competitive performance for a real-world code 
out to 1000 nodes

• Cplant™ is a viable, reliable, large-scale platform
• Issues with network resources become important 

as applications scale



Ongoing Runtime System Work

• Intelligent allocator
– Try to account for network topology or routes
– Ideal allocator would allocate contiguous nodes
– Measure impact on load time

• Dynamic process creation
– Support for MPI-2 dynamic process creation functions

• Multiprocessor support
– Current environment supports one process per node

• Multithreaded support
– Support using pthreads in an application process

• Library API for runtime system interaction
– Host library for custom allocator



Licensing

• Cplant™ source code released under the GNU 
LGPL
– 1400+ downloads since April 19, 2001

• Cplant™ source code licensed to Unlimited Scale, 
Inc.
– Intended to be base technology for initial product
– Sandia has a small equity in USI
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